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A first-principles self-consistent orthogonalized-plane-wave (SCOPW) energy-band calculation has been
performed for cubic BAs using a nonrelativistic formalism and Slater’s free-electron exchange approxima-
tion. These are the first fully self-consistent energy-band solutions reported for BAs. The imaginary part of
the dielectric constant, spin-orbit splittings, effective masses, deformation energies, and the x-ray form
factors (Fourier transforms of the electron charge density) have been calculated. The theoretical results are

compared with the available experimental data.

I. INTRODUCTION

ONE of the III-V boron compounds which remains
relatively unexplored because of the difficulties in-
volved in syntheses of pure single crystals is BAs.
BAs crystallizes in the cubic zinc-blende structure with
a lattice constant of 4.777 A.! The cubic BAs is stable
in the presence of arsenic vapor up to 920°C. Above this
temperature the cubic BAs transforms into a rhombo-
hedral structure.

The purpose of this paper is to report for BAs a
theoretical calculation of the band structure, the im-
aginary part of the dielectric constant (e) derived
from the theoretical bands, spin-orbit splittings, effec-
tive masses, deformation energies, and the form factors
(the Fourier transforms of the electron charge density).

In the past couple of years a great deal of success has
been attained in calculating the energy-band structures
of group III-V, ITI-VI, and IV compounds using an un-
adjusted first-principles self-consistent orthogonalized-
plane-wave (SCOPW) model developed here at ARL.
The SCOPW programs used to calculate the electronic
band structure have given surprisingly good one-elec-
tron band energies for tetrahedrally bonded compounds
when Slater’s exchange is used.?~8

II. CALCULATIONAL DETAILS
A. Self-Consistent OPW Model

The orthogonalized-plane-wave method of Herring?
is used to calculate the electron energies. In the SCOPW
model 23 the electronic states are divided into tightly
bound core states and loosely bound valence states.
The core states must have negligible overlap from atom
to atom. They are calculated from a spherically sym-
metrized crystalline potential.
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The valence states must be well described by a
modified Fourier series,

Yio(r) =3 Bu(Qi W2 ¢iku-r
—> eRa > A . (|r—R,|)),

where k,=ko+K,, ko locates the electron within the
first Brillouin zone, K, is a reciprocal-lattice vector, R,
is an atom location, ¥, is a core wave function, and Qg
is the volume of the crystalline unit cell. The coefficients
4.,%, are determined by requiring that y¥,(r) be orthog-
onal to all core state wave functions. The variation
of B, to minimize the energy then results in the valence
one-electron energies and wave functions.

The dual requirements of no appreciable core overlap
and the convergence of the valence wave function ex-
pansion with a reasonable number of OPW’s determines
the division of the electron states into core and valence
states. For B, the 2s and 2p states (for As the 4s and
4p states) are taken as the valence states. OPW series
convergence is discussed in Sec. IT B.

The calculation is self-consistent in the sense that
the core and valence wave functions are calculated
alternately until neither changes appreciably. The
Coulomb potential due to the valence electrons and the
valence charge density are both spherically symme-
trized about each inequivalent atom site. With these
valence quantities frozen, new core wave functions are
calculated and iterated until the core wave functions
are mutually self-consistent. The total electronic charge
density is calculated at 650 crystalline mesh points
covering 1/24 of the unit cell, and the Fourier trans-
form of p(#)*/? is calculated. The new crystal potential
is calculated from the old valence charge distribution
and the new core charge distribution. Then new core-
valence orthogonality coefficients 4,,* are calculated.
The iteration cycle is then completed by the calculation
of new valence energies and wave functions. The itera-
tion process is continued until the valence one-electron
energies change less than 0.01 eV from iteration to
iteration.

The appropriate charge density to use for both the
self-consistent potential calculation and the form factor
calculation is the average charge density of all the elec-
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trons in the Brillouin zone. In the present self-consistent
calculations, this average is approximated by a weighted
average over electrons at the I', X, L, and IV high sym-
metry points of the Brillouin zone shown in Fig. 1.
The weights are taken to be proportional to the volumes
within the first Brillouin zone closest to each high sym-
metry point. The adequacy of this approximation has
been tested and the error in the energy eigenvalues has
been shown to be less than 0.1 eV.7

The present self-consistent model neglects correlation
effects and approximates the complicated Hartree-Fock
exchange potential by a term proportional to the elec-
tron charge density to the one-third power. The best
known exchange potentials are Slater’s:

Vaes= —6[(3/81!‘);)(1’)___]1/3,
and Kohn and Sham’s' and Gaspar’s®?:

Viexsa=—4L(3/8m)p(r) 3.

We have experimented with the constant of propor-
tionality. When calculating the energy-band structure
of tetrahedrally bonded semiconductors with our
SCOPW model, we have found that Slater’s exchange
always gives results that agree most closely with
experiment. For compounds such as Si and ZnS, band
gaps and e, peak positions agree to within 0.1 eV. For
compounds such as ZnSe and Ge, the differences be-
tween theory and experiment are as bad as 0.5 eV, but
again Slater’s exchange gives results in closest agree-
ment with experiment. To give a feeling for which
transitions are most sensitive to the value of the ex-

&

F16. 1. Zinc-blende Brillouin zone with high
symmetry points labeled.

o J, C. Slater, Phys. Rev. 81, 385 (1951).
11 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
2 R. Gaspar, Acta Phys. Acad. Sci. Hung. 3, 263 (1954).

3459

TaBLE I. Self-consistent energy eigenvalues for cubic BAs
based on Slater’s and Kohn and Sham’s exchange and on a four-
point (T, X, L, and W) zone sampling. 537, 411, and 259 OPW’s
were used at I and a comparable member of OPW’sat X, L,and W.
The zero of energy has been placed at the top of the valence band
(T'15). All entries are in eV.

Kohn-Sham

Slater’s exchange exchange

Level 537 OPW’s 411 OPW’s 259 OPW’s 259 OPW'’s
Ty 4.69 4.65 4.57 5.08
T1sc 3.56 3.54 3.56 3.12
Ti50 0.0 0.0 0.0 0.0
T'1v —15.08 —15.10 —15.17 —15.44
X1 2.19 2.19 2.17 1.21
Xz 1.89 1.85 1.75 0.92
KXo —3.83 —3.84 —3.87 —4.22
X3 —8.29 —8.35 —8.49 —8.74
Xi1o —11.10 —11.09 —11.08 —11.01
X1e—Xs0 6.02 6.03 6.04 5.43
Xae—Xso 5.72 5.69 5.62 5.14
Ly, 5.23 5.17 5.20 4.57
Li, 2.93 2.89 2.81 2.73
Lsy —1.66 —1.72 —1.72 —1.86
Ly, —8.37 —8.43 —8.53 —9.06
L1y —12.34 —12.38 —12.42 —12.43
Lye—Ls, 6.89 6.89 6.92 6.43
Lig—Lsy 4.59 4.61 4.53 4.59
Wae 6.50 6.56 6.70 6.39
Wae 5.86 5.90 5.94 5.07
W, —4.77 —4.80 —4.82 —5.43
W —5.10 —5.13 —5.18 —5.80
Wi —7.88 —7.95 —8.10 —8.22
W s —10.96 —10.95 —10.94 —10.81
Woe—W 4o 10.63 10.70 10.76 10.50

change constant, both Slater’s and Kohn, Sham, and
Gaspar’s energies are tabulated in Table I for selected
high symmetry point values.

In order to calculate the absorptive part of the dielec-
tric constant, e;, a pseudopotential fit is made to the
relevant energy levels at the I', X, L, and W points.
The pseudopotential technique is then used to calculate
energy differences and transition matrix elements
throughout the Brillouin zone.® In our experience, this
procedure gives the e, peaks at the correct energies.
However, the relative peak heights do not match ex-
periment because of their dependence upon the poor
pseudopotential wave functions, and because of com-
plicated electron-hole and electron-phonon interactions
which are ignored in our model.

One way of taking relativistic effects into account
within the framework of nonrelativistic band calcula-
tions is with first-order perturbation theory. The
perturbing Hamiltonian obtained for the spin-orbit
splitting is

Ho=—%igo-[VV ()X V],

where V (7) is the potential, ¢ is the Pauli spin operator,
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and ¢ is the fine-structure constant. The I';s, SCOPW
valence wave functions are used in this calculation.

B. OPW Series Convergence

A major problem involved in an OPW calculation of
BAs is the very slow convergence of the OPW series
expansion of the valence and conduction wave func-
tions. In the OPW expansion, all k vectors are used
whose magnitudes are smaller than some value Zmax.
The minimum distance that can be defined by the plane-
wave terms in the OPW series is thus roughly

™
din™ Pmin= —— =a/2(m+-n3-+12)12,

max

where ¢ is the lattice constant and (m,n,l) are integers
defining the largest & vector. The dependence of the
BAs valence and conduction band energies upon @mia
is shown for two different OPW models in Figs. 2 and 3.
In Fig. 2, Herman’s overlapping free atomic potential
model™ is used in which the potential is calculated from
free-atom charge densities which are packed in the
crystal lattice. In Fig. 3, SCOPW results are presented
for different dmin. For both figures, the B and As core
charge densities (4r72(r)) are also shown.

As we discuss at length in another paper,' the series
convergence depends upon two factors. One is the
relative core size of anion and cation. duwia depends upon
the lattice constant which depends upon the sum of
anion and cation core sizes. The penetration into the
smaller core is thus least when the core size ratio is most
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extreme. It is clear from the figures that BAs has an
extreme core size ratio and thus a relatively poor pene-
tration into the B core. The second factor involves the
presence or absence of core wave functions in the sym-
metrized OPW’s. If no core wave functions are present
in an OPW expansion, it becomes a pure plane-wave
expansion (Fourier series) with consequently poorer
convergence. B has no p states in the core, and thus the
TI'i5, wave function contains no B core states to aid con-
vergence. The only saving factor is that I';5, conver-
gence depends much more critically upon penetration
into the anion than upon cation penetration. But it can
be seen from the figures that convergence of the
energies is still not complete by 1000 OPW’s. This lack
of convergence can also be seen more quantatively in
Table I where SCOPW energies are given for 259, 411,
and 537 OPW’s. In going from 411 OPW’s to 537 OPW’s
the I‘lvy P15v, F15c, and Plc Changed by 0.05, 007, 006,
and 0.03 eV, respectively. We estimate a maximum un-
certainty of 0.3 eV in our most converged 537 SCOPW
results due to lack of OPW convergence.

III. RESULTS

The SCOPW model involves no adjustable param-
eters. However, one must supply the lattice constant. In
these calculations the lattice constant used was 4.777 A
determined by Perri, LaPlaca, and Post.! Ku!® has
reported a lattice constant of 4.7778 A. Self-consistent
calculations were also made with lattice constants of
4.767 A and 4.787 A to determine the effects of pressure.

The energy bands based on Slater’s exchange, a

BAs
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F16. 4. SCOPW energy-band structure of BAs. The solid dots denote SCOPW energy levels. The solid lines were
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TasLE II. Self-consistent energy eigenvalues for BAs based on
four-point zone sampling, Slater’s exchange, 259 OPW’s, and a
lattice constant of 4.777 A are given in column 2. The changes in
the eigenvalues when self-consistency was obtained at 4. 767 A
and 4.787 A are given in columns 3 and 4. The resulting average
deformation energies appear in column 5. The energies are in eV.
Deformation energies are in eV per unit dilation.

Energy

Level (4. 777 A) Esnri—Esnst Esngg—Esan  D. E.
T —8.046 0.037 0.044 6.5
T150 7.127 0.090 0.099 15.0
T'15c 10.684 0.093 0.104 15.7
Ty 11.706 0.175 0.191 29.1
X1o —3.955 0.070 0.075 11.5
X3 —1.364 0.056 0.069 9.9
Xso 3.260 0.064 0.073 11.1
Xse 8.878 0.082 0.095 14.1
X1 9.299 0.087 0.090 14.2
Ly —5.290 0.059 0.066 10.1
L1y —1.404 0.047 0.056 8.2
Lsy 5.408 0.079 0.088 13.3
L. 9.941 0.129 0.140 21.4
Ls, 12.323 0.097 0.105 16.1
Wi —3.816 0.078 0.078 12.4
Wi —0.968 0.068 0.074 11.3
Waw 1.949 0.060 0.061 9.6
W 2.300 0.065 0.062 10.1
Wae 13.072 0.103 0.100 16.2
Wie 13.830 0.170 0.134 24.0

lattice constant of 4.777 A, and 537 OPW’s at T' (and
a comparable number of OPW’s at X, L, and W) are
given in Fig. 4. The energy elgenvalues are given in the
fourth column of Table I.

There are two minima in the bottom conductlon band
which are lower than the minimum at I'. The lowest
minimum occurs at 0.81 of the distance from the I point
to the x point. The indirect gap which is measured to
this point, A;,”—TI'i5,, is 1.6 €V. The next lowest mini-
mum occurs at the L point where L;,—T'15, is 2.93 eV.
The direct gap T'isc—T's, is 3.56 eV.

Ku'® has made transmission-versus-wavelength mea-
surements at room temperature on powdered samples to
estimate the optical energy gaps for BAs. The optical
energy gap was estimated by extrapolation of the slope

TasLE III. Theoretical BAs structure factors in electron per
crystallographic unit cell. The RHF values are relativistic free
atomic Hartree-Fock results. KSG and Sl refer to the use of the
Kohn-Sham-Gaspar or Slater exchange approximation. SI-RHF,
for example, refers to structure factors calculated using SCOPW
valence electron densities and RHF free atomic core densities.
259 and 537 refer to the number of OPW’s used in the wave
function expansion.

259 OPW'’s 537 OPW's
hkl RHF KSG KSG-RHF 81 SI-RHF Sl SI-RHF
111 108.39 109.00 109.10 110.26 109.81 110.27 109.81
200 92.87 92.62 92.72 93.64  93.07 93.50 92.93
220 99.07 98.61 98.81 99.98  99.05 100.12  99.19
311 85.02 84.44 84.62 85.64  84.56 85.67  84.59
222 75.81 75.88 76.03 77.01 75.92 76.95  75.85
400 82.97 82.45 82.69 83.79 82.54 83.87 82.63
331 72.50 72.68 72.87 74.05 72.79 74.06 72.81
420 64.66 64.74 64.86 65.99 64.76 65.93  64.70
224 72.29 72.18 72.42 73.63 72.33 73.70  72.40
115 63.40 63.36 63.54 64.71 63.47 64.71 63.47
333 63.40 63.26 63.44 64.60 63.36 64.60 63.35
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of the optical transmission-versus-wavelength plot to
zero transmission. The value he obtained was 1.46 eV.
Vorob’ev, Medvedeva, and Sobolev!” concluded from
reflection spectra studies of BAs that either their
samples were severely contaminated with impurities or
that there are indirect transitions in the range of 0.8
to 2.0 eV.

To calculate the effects of hydrostatic pressure on the
band energies, we iterated to self-consistency using
lattice constants of 4.787 A and 4.767 A in addition
to the equilibrium lattice constant of 4.777 A. The
results are presented in Table IT. The two sets of energy
differences give one a feeling for the accuracy involved
in taking small differences of quantities from different
sets of iteration. Since the lattice constant was changed
by 0.29, on each side of the equilibrium lattice constant
these two sets of energy differences also give one a
feeling of the linearity present. The deformation
energies are defined as

D. E.=38E/(8V/V)=—oE/(38a/a)

and are given in units of eV per unit dilation. ¢ is the
lattice constant.

The imaginary part of the dielectric constant (es) is
given in Fig. 5. The location of some of the major transi-
tions are also indicated. It should be remembered that
the detailed e, shape is unreliable, while the peak posi-
tions are much more reliable. Vorob’ev et al. found a
reflection peak at 4.77 eV which agrees very well with
our L;.— L3, transitions around 4.6 eV. They did not
report any structure at higher energies. Our peak at
around 5.8 eV is due to transitions occurring in the
outer part of the zone in the U-K region. The theoretical
peak around 7 eV is due primarily to transitions near
the L point, Ls,— Ls,.

The spin-orbit splitting at 2=0 of the top T'is
valence band into I'y and I's bands has been found by
the use of first-order perturbation theory on the self-
consistent Slater I'i5, wave functions to be 0.33 eV.

Effective masses have been calculated for the top
valence band at the I point and for the bottom con-
duction band at the I'—X minimum. For the Tis,
valence band (where spin-orbit splitting has been
neglected) mp*=0.71 (heavy hole) and 0.14 (light hole)
for the (1,1,1) direction and mr*=0.31 (heavy hole)
and 0.26 (light hole) for the (1,0,0) direction. For the
conduction band minimum in the (1,0,0) direction, the
effective mass in the parallel direction is about 1.2.

In Table III theoretical Fourier components of the
charge density (the x-ray form factors) are given. The
Fourier components in the column headed RHF are
obtained by the superposition of relativistic Hartree-
Fock free atoms placed in the crystalline lattice. The
columns are headed with the exchange potential used
in the SCOPW model. From Table III it can be seen
that for the higher reflections the RHF results agree

17V. G. Vorob’ev, Z. S. Medvedeva, and V. V. Sobolev, Izv.
Akad. Nauk SSSR, Neorgan, Mat. 3, 959 (1967).
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with the results obtained using Kohn and Sham’s ex-
change potential. This good agreement illustrates the
well known general result that the Kohn-Sham wave
functions are very good for free atom calculations. For
the low reflections the RHF results are generally too
small in semiconductors. The opposite result applies in
metals where the valence charge spreads out. The Slater
results generally give slightly better agreement with
experiment for lower reflection.!8

IV. CONCLUSIONS

The validity of these calculations cannot be fully
judged because of the absence of comprehensive experi-

8P, M. Raccah, R. Euwema, D. J. Stukel, and T. C.
Collins, Phys. Rev. ‘B 1, 756 (1970).
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mental results. It should be remembered that these
results are based almost completely on first principles
with no adjustment to fit experiment. The only experi-
mental data used is the lattice constant. Correlation is
neglected and Slater’s exchange approximation is made.
In the final analysis the validity of these results depends
upon the applicability of Slater’s exchange approxima-
tion and the validity of the SCOPW model. Past experi-
ence on many tetrahedral compounds gives us consider-
able faith in the validity of these results.
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